skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pérez Paolino, Facundo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a multi-epoch spectroscopic study of LkCa 4, a heavily spotted non-accreting T Tauri star. Using SpeX at NASA’s Infrared Telescope Facility (IRTF), 12 spectra were collected over five consecutive nights, spanning ≈1.5 stellar rotations. Using the IRTF SpeX Spectral Library, we constructed empirical composite models of spotted stars by combining a warmer (photosphere) standard star spectrum with a cooler (spot) standard weighted by the spot filling factor,fspot. The best-fit models spanned two photospheric component temperatures,Tphot= 4100 K (K7V) and 4400 K (K5V), and one spot component temperature,Tspot= 3060 K (M5V) with anAVof 0.3. We find values offspotto vary between 0.77 and 0.94 with an average uncertainty of ∼0.04. The variability offspotis periodic and correlates with its 3.374 day rotational period. Using a mean value forfmeanspotto represent the total spot coverage, we calculated spot corrected values forTeffandL. Placing these values alongside evolutionary models developed for heavily spotted young stars, we infer mass and age ranges of 0.45–0.6Mand 0.50–1.25 Myr, respectively. These inferred values represent a twofold increase in the mass and a twofold decrease in the age as compared to standard evolutionary models. Such a result highlights the need for constraining the contributions of cool and warm regions of young stellar atmospheres when estimatingTeffandLto infer masses and ages as well as the necessity for models to account for the effects of these regions on the early evolution of low-mass stars. 
    more » « less